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Compact formula are obtained by noting with an index j=0 the food product and j=1..n the n 
plastic layers of the packaging material. The layer 1 is the layer in contact with food as 
described in figure 1. The thickness of each layer is noted lj. By convention, l0 is related to the 
half thickness of the food product since the product is assumed to be symmetrically in contact 
with the same material. If it is not the case (e.g. film sheet on a single side), l0 must be 
replaced by the whole thickness. 

 
Figure 1. Indexing of n-multilayers materials in contact with food. 

 

1.1.1 Thermodynamic equilibrium 

1.1.1.1 Sorption and desorption properties 
The equilibrium of sorption and sorption in each layer is assumed to be reversible and obey to 
Henry law. As a result, an equivalent vapor pressure of the substance in equilibrium with the 
amount of the substance dispersed locally in each layer j is defined as follow: 
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where  and H
jk ρ j are respectively the Henry coefficient of the substance in the layer j and 

ρ j the density of the layer j. M is the molecular mass of the considered substance. It is worth 
to notice that  (with units in J⋅molH

jk
-1) is also the reciprocal of the solubility of the substance 

in the  layer j. 
 

1.1.1.2 Condition of equilibrium between j1 and j2 
Two layers, noted j1 and j2, at a same temperature without external mechanical constraints 
(i.e. at the same pressure) are at thermodynamical equilibrium when their activity and 
consequently their partial pressures in desorbable substances are equal: 
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where  is the partition coefficient of the considered substance between j
1 2/j jK 1 and j2. 

1j eq
C and 

2j eq
C  are the concentrations at equilibrium respectively in layers j1 and j2. 

 

1.1.1.3 Mass balance considerations 
By assuming that the considered substance is initially only present in the packaging material 
and not in the food product, the mass balance between the food product and the packaging 
material is written:  
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By noticing that the condition of equilibrium enforces{ } 0
1..
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=
= ,  the concentration in 

food at equilibrium is finally given by: 
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The corresponding partial pressure at equilibrium is equivalently as a function of the initial 
partial pressure in each layer: 
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Equations (4) and (5) generalize the equation (??) to multilayer materials. It is worth to notice 
that they do not require that the layers are initially at equilibrium. However, they assume that 
the initial concentration is uniform in each layer. When it is not the case, equation (4) must be 
replaced by a continuous integration over each layer. For general 1D geometries, one gets: 
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Where m=0,1,2 respectively for Cartesian, cylindrical and spherical coordinates. is the 

cumulated thickness (starting from the product). 
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For convenience and according to equation (2), choosing k0=1 leads to identify kj to the 
partition coefficient between the food product and the packaging layer j. 
 



1.1.2 Transport equations 
By assuming a local thermodynamical equilibrium at the interfaces between all layers 
(including the food product), the partial pressure is continuous over all layers. As a result, the 
partial pressure seems a best choice to implement transport equations in commercial 
numerical codes. This choice leads to express the local mass flux in the layer j as a 
consequence of a gradient in partial pressure: 
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If the Dj can be considered uniform in the layer j>1, 
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transport property. The equivalent local mass balance is accordingly written for any layer j as:  
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Since significant discrepancies may be expected between { }α
=1..j j n

values and between 

{ }δ
=1..j j n

 values, a dimensionless formulation seems preferable to preserve the numerical 

stability of the discretization scheme. 
By analogy with permeation, the reference length scale, lref, is associated to the layer with the 
maximum mass transfer resistance (noted jref), that is with the lowest { }α

=1..j j j n
l value. The 

dimensionless time or Fourier number, Fo, is expressed as: 
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An almost dimensionless formulation is finally obtained: 
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At the interface between j=1 and j=0, that is at the position x=0, the boundary condition is 
written: 
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By introducing the dimensionless flux α
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dimensionless boundary condition: 
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where α⋅
= ref

ref

h
Bi

l
 is the mass Biot number and =

0

reflL
l

is associated to a dilution factor. 

An impervious boundary condition is assumed at =* 1x :  
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